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Abstract
Surfactant protein-A (SP-A) is the best studied and most abundant of the protein components of lung surfactant and plays an
important role in host defense of the lung. It has been shown that ozone-induced oxidation of SP-A protein changes its
functional and biochemical properties. In the present study, eight plant polyphenols (three flavonoids, three hydroxycinnamic
acids, and two hydroxybenzoic acids) known as strong antioxidants, were tested for their ability to inhibit ozone-induced SP-A
oxidation as a mechanism for chemoprevention against lung damage. SP-A isolated from alveolar proteinosis patients was
exposed to ozone (1 ppm) for 4 h. The flavonoids protected SP-A from oxidation in a dose dependent manner. (2)-
Epicatechin was the most potent flavonoid and exhibited inhibition of ozone-induced formation of carbonyls by 35% at a
concentration as low as 5mM. Hydroxybenzoic acids inhibited SP-A oxidation in a dose-dependent manner although they
were less potent than flavonoids. On the other hand, hydroxycinnamic acids exhibited a different inhibitory pattern. Inhibition
was observed only at medium concentrations. The results indicate that inhibition of SP-A oxidation by plant polyphenols may
be a mechanism accounting for the protective activity of natural antioxidants against the effects of ozone exposure on lungs.

Keywords: SP-A, ozone, lungs, plant polyphenols, protein oxidation

Abbreviations: AP, alveolar proteinosis; BAL, bronchoalveolar lavage; Cys, cysteine; DNP, 2,4-dinitriphenylhydrazone;
DNPH, 2,4-dinitriphenylhydrazine; His, histidine; HRP, horseradish peroxidase; LDL, low density lipoprotein; LPS,
lipopolysaccharide; Met, methionine; NF-kB, nuclear factor kB; PC, phosphatidylcholine; SDS-PAGE, sodium dodecyl sulfate-
polyacrylamide gel electrophoresis; SP-A, surfactant protein; TNF-a, tumor necrosis factor a; Trp, tryptophane; Tyr, tyrosine

Introduction

Pulmonary surfactant is a complex and highly

regulated mixture of lipids and proteins. A key function

of surfactant is to lower surface tension at the air-liquid

interface and prevent alveolar collapse at low lung

volumes in order to assure continuation of optimal

O2/CO2 exchange as well as the regulation of

pulmonary host defense [1]. The most abundant and

extensively characterized of its protein components
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is surfactant protein A (SP-A), that is secreted by

alveolar type II cells and by cells of the tracheal and

bronchial submucosal glands and in some species by

nonciliated bronchiolar epithelial cells [2–5]. SP-A

plays an important role in surfactant physiology

including surfactant structure and metabolism, as

well as in host defense and the modulation of

inflammatory and anti-inflammatory processes in the

lung [6–8].

Ozone (O3) is a major component of photochemical

air pollution or smog. It is produced by the sunlight-

catalyzed reaction between nitrogen oxides and

volatile organic compounds (Figure 1) [9]. It has

been estimated that in the USA nearly 113 million

people live in areas that have ozone levels above the

National Ambient Air Quality Standards daily

exposure limit of 0.08 ppm for an 8 h period [10].

Exposure to ozone has been associated with impaired

lung function [11–12], as ozone is a strong oxidizing

agent and is rapidly converted to other reactive

oxidant species which are capable of oxidizing

biological macromolecules such as lipids and proteins

[13–14]. A number of studies have shown that

oxidation of SP-A by ozone impairs many aspects of

SP-A function including decreased ability to interact

with alveolar macrophages [15], to stimulate cytokine

production by THP-1 cells [16–17] to inhibit

phosphatidylcholine (PC) and surfactant secretion

by type II cells [18] and to stimulate TNF-a

production by THP-1 cells in the presence of

bleomycin [19]. In general, it has been found that

SP-A was one of the most frequently oxidized lung

proteins in children with chronic pulmonary diseases

[20] as well as in patients with cystic fibrosis [21].

It has been shown that supplementation of antiox-

idant compounds present in plant foods, such as

carotenoids, protected from the detrimental effects of

ozone on lung function [22–23]. Another major class of

dietary antioxidants exhibiting beneficial health effects

on human health is the plant polyphenols. Over the last

several years a number of in vivo and in vitro studies have

shown that, due to their strong antioxidant properties

[24], polyphenols may prevent diseases associated with

oxidative stress, such as cancer [25–26], cardiovascular

[27], and neurodegenerative diseases [28]. In addition,

it has been reported that polyphenols modulate the

activity of proteins [29] and enzymes [30–31] by

forming complexes with them. In the present study, we

investigated the effects of eight common plant

polyphenols on ozone-induced SP-A oxidation. These

polyphenols were three flavonoids (rutin hydrate, (þ)-

catechin, and (2)-epicatechin), three hydroxycinnamic

acids (caffeic acid, ferulic acid, and p-coumaric acid)

and two hydroxybenzoic acids (gallic acid, and

protocatechuic acid) (Figure 2). A potential inhibitory

activity of the tested compounds against ozone-induced

oxidation of SP-A may indicate a protective activity of

dietary antioxidant products from air-pollutants.

Materials and methods

Chemicals and reagents

The plant polyphenols, caffeic acid, ferulic acid,

p-coumaric acid, (þ)-catechin, (2)-epicatechin, rutin

hydrate, gallic acid, and protocatechuic acid were

purchased from Sigma (St Louis, MO, USA). All

other reagents used were of analytical grade.

Preparation of native human SP-A

The native human SP-A was purified from BAL fluid

obtained from six alveolar proteinosis patients (AP1-

AP6) using a butanol-extraction method as described

[32] with slight modifications. In brief, after extraction

with butanol, the pellet was completely dried with a

flux of nitrogen gas and then homogenized twice in the

buffer (20 mM n-octyl b-D-glucopyranoside, 10 mM

Hepes, 150 mM NaCl, pH 7.4). After pelleting of the

sample, insoluble protein was dissolved in 5 mM

Tris/HCl, pH 7.4 and dialyzed for 48 h against the

same buffer. The dialyzed solution was centrifuged at

155,000g at 48C for 30 min, and the supernatant

containing SP-A was collected, aliquoted and kept at

2808C. The SP-A samples were checked routinely and

there was not any auto-oxidation during the storage

period. All procedures were performed at 48C or on

ice. Protein concentration was determined using the

Bio-Rad Microassay kit (Bio-Rad, CA, USA). More-

over, protein samples were subjected to nonreducing

SDS-PAGE electrophoresis in order to test the degree

of SP-A purification. In particular, the SP-A samples

were mixed with a loading buffer containing 2% w/v

SDS, 0.1 M Tris/HCl (pH 6.8), and 10% glycerol and

heated at 958C for 10 min and then electrophoresis was

made on 4–15% acrylamide gradient gels at 90 V for

1 h followed by silver staining (Figure 3(B)).

Furthermore, the oxidation status of the SP-A

samples from proteinosis patients was tested using the

Oxyblot Oxidized Protein Detection Kit (Intergen,

NY, USA). This kit uses a method similar to that

Figure 1. (i) Photodecomposition of NO2 by sunlight results in the

formation of NO and O; (ii) reaction of atomic oxygen with

molecular oxygen produces ozone; (iii) then ozone reacts

spontaneously with NO and regenerates NO2 and also produces

O2; (iv) organic compounds such as alkoperoxyls (RO2) react with

NO resulting in an increase of NO2/NO ratio and O3 concentration.
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described by Levine and colleagues [33] and can detect

carbonyl groups that have been introduced into

proteins through oxidation. Briefly, 5ml of protein

were denatured by adding an equal volume of 12%

SDS. Samples were then derivatized with 5ml of

0.5 £ 2,4-dinitriphenylhydrazine (DNPH) solution

and incubated for 10 min at room temperature.

Derivatization was stopped by the addition of 7ml of

neutralizing solution and then the samples were

analyzed by dot blot. For protein dot blots, aliquots

containing 250 ng of DNPH-derivatized proteins were

brought up to a volume of 250ml with 0.1 M phosphate

buffered saline (pH 7.5), and 100 ng of protein were

blotted onto nitrocellulose membrane in duplicate

using a 96-well dot-blot apparatus (Bio-Rad, CA,

USA). Immunodetection of oxidized proteins was

performed according to the instructions included in

the Oxyblot kit, and used the rabbit anti-DNP (1:600)

and goat anti-rabbit IgG (HRP-congugated) (1:1200)

antibodies supplied by the vendor. Blots were exposed

to XAR film (Eastman Kodak, NY, USA) after

detection by enhanced chemiluminescence. After-

wards, the oxidation of proteins was expressed as the

product of the optical density of dots times their area

using the Quantity One software (Bio-Rad, CA, USA).

The corresponding dot blot and densitometric values

are shown in Figure 3(A). SP-A proteins from

proteinosis patients are usually more oxidized than

those from normal subjects and thus only the samples

with low oxidation (i.e. AP1, AP2, and AP4) were used

after pooling for thepresent experiments (Figure 3(A)).

Exposure of SP-A to ozone and detection of protein

oxidation

The system for in vitro ozone exposure was described

previously [34] and has been used in several of our

previous studies regarding the effects of ozone

exposure on proteins (especially SP-A) and cells

[16–19,35]. This system delivers precisely controlled

flow rates of gases (filtered air with 5% carbon dioxide

saturated with water vapor at 378C) to the exposure

vessels with precise ozone concentrations. A dose-

respone curve was designed in order to select the

appropriate SP-A concentration for use in the

experiments (Figure 4). Namely, 25, 50, 100, and

200mg/ml of SP-A were exposed to ozone (1 ppm) for

4 h. In the presence of filtered air, SP-A oxidation was

Figure 2. Chemical structure of polyphenols under study.
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low while after exposure to ozone there was a

sharp increase in its oxidation. Additionally, it was

observed that as the concentration of SP-A decreases,

its oxidation increases. Optimal concentration was

considered to be the one at 50mg/ml because at this

concentration there was both a sufficient increase and

a plateau in the oxidation of SP-A.

Thus, in the present study, SP-A protein solution

(100ml) at a concentration of 50mg/ml were exposed

to ozone (1 ppm) with or without polyphenols for 4 h in

24-well plates. In total eight polyphenols were tested to

determine whether they could inhibit ozone-induced

SP-A oxidation. These were five polyphenolic acids

(i.e. caffeic acid, ferulic acid, p-coumaric acid, gallic

acid, and protocatechuic acid) and three flavonoids

(i.e. (þ )-catechin, (2 )-epicatechin, and rutin

Figure 3. Oxidation and purity of SP-A. SP-A samples were obtained from six alveolar proteinosis patients (AP1, AP2, AP3, AP4, AP5, and

AP6) and subjected to 4–15% SDS-PAGE electrophoresis under non-reducing conditions followed by silver staining. Their oxidation status

was tested using the Oxyblot Oxidized Protein Detection Kit. (A) Oxidation status of SP-As by protein dot blot (100 ng/dot) and

densitometric measurement of dots. Samples with low oxidation (i.e. AP1, AP2, and AP4) were used for subsequent experimentation. (B)

SDS-PAGE electrophoresis of 1mg of each SP-A sample was performed in a 4–15% gradient polyacrylamide gel after heating at 958C for

10 min. hSP-A, human SP-A from a healthy volunteer served as positive control.

Figure 4. Dose response experiments for ozone-induced SP-A

oxidation. Concentrations of 25, 50, 100, and 200mg/ml of SP-A

were exposed to ozone (1 ppm) for 4 h. Oxidation was expressed as

the product of optical density (OD) by the area (mm2) of dots.

Values are the mean ^ SE from two independent experiments

carried out in triplicate.
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hydrate). Each polyphenol was tested at four different

concentrations (5, 25, 50, and 100mM) and at least

three independent experiments done in triplicate were

performed. After exposure, SP-A proteins were

transferred to sterile microcentrifuge tubes and their

concentration and oxidation was determined immedi-

ately or stored at 2808C until further analysis.

Proper controls were also included in each exper-

iment to avoid possible artifact during the assay: (a) SP-

A was exposed to filtered air for 4 h at 378C (negative

control). (b) SP-A alone was exposed to ozone (1 ppm)

for 4 h at 378C (positive control). (c) SP-A protein was

incubated with polyphenols at maximum concen-

tration used in the study for 4 h at 378C in the presence

of filtered air. (d) The polyphenols at maximum

concentration used in the study were added to oxidized

SP-A just before the DNPH reaction.

The inhibition percentage of ozone-induced SP-A

oxidation was calculated by the following formula:

% Inhibition ¼ ½1 2 S=ðSPC 2 SFAÞ� £ 100

where S: the oxidation of samples; SPC: the oxidation

of positive control; SFA: the oxidation of SP-A exposed

to filtered air.

Statisitical analysis

For statistical analysis the one-way ANOVA was

applied followed by Dunnett’s test for multiple pair

wise comparisons. Correlations between variables

were examined by Spearman’s correlation analysis.

Results

Eight common plant polyphenols were tested for their

effects on SP-A oxidation induced by ozone. These

polyphenols were three flavonoids (rutin hydrate, (þ)-

catechin, and (2)-epicatechin), three hydroxycin-

namic acids (caffeic acid, ferulic, acid and p-coumaric

acid) and two hydroxybenzoic acids (gallic acid and

protocatechuic acid). The three flavonoids inhibited

the ozone-induced SP-A oxidation in a dose-depen-

dent manner. (þ)-Catechin demonstrated statistically

significant inhibition by 25, 47, and 62% ( p , 0.05)

at concentrations of 25, 50, and 100mM, respectively

(Figures 5(B) and 6(A)) in a dose-dependent manner

(r ¼ 20.75, p , 0.01). (2)-Epicatechin significantly

reduced protein carbonyl formation by 35, 43, 48, and

60% ( p , 0.01) at concentrations of 5, 25, 50, and

100mM respectively, in a dose-dependent manner

(r ¼ 20.84, p , 0.01) as shown in Figures 5(A) and

6(A). Moreover, rutin hydrate protected significantly

SP-A from oxidation by 38, 40, and 51% ( p , 0.05)

at concentrations of 25, 50, and 100mM, respectively

(Figures 5(C) and 6(A)) in a dose-dependent manner

(r ¼ 20.73, p , 0.01).

The two hydroxybenzoic acids also inhibited

oxidation of SP-A exposed to ozone. Dot-blot analyses

and subsequently measurement of density of dots

indicated that protocatechuic acid prevented signifi-

cantly SP-A oxidation at all tested concentrations

(Figure 5(E)). Specifically, the inhibition was 25% at

5mM ( p , 0.05) but reached a plateau at 50mM (43%

inhibition, p , 0.01) (Figure 6(B)). Gallic acid had

no effect on ozone-induced SP-A oxidation at 5mM,

but like protocatechuic acid, there was a plateau in

inhibitory activity at 50mM (33% inhibition, p , 0.05)

(Figures 5(D) and 6(B)).

Furthermore, the hydroxycinnamic acids inhibited

ozone-induced SP-A oxidation but exhibited a

different inhibitory pattern in comparison with the

flavonoids and hydroxybenzoic acids. In particular,

there was an optimum medium concentration at which

the inhibition was maximum while at the lowest and

highest concentrations there was not statistically

significant inhibition. Caffeic acid exerted significant

inhibition ( p , 0.05) by 34 and 38% at 25 and 50mM

respectively while at 5 and 100mM there was not any

significant effect (Figures 5(F) and 6(C)). In addition,

p-coumaric acid showed a maximum significant

inhibition by 39% at 25mM ( p , 0.05) while at 50

and 100mM there was only an inhibitory trend and at

5mM there was not any effect (Figures 5(G) and

6(C)). Ferulic acid did not affect ozone-induced SP-A

oxidation at 5, 50, and 100mM while at 25mM there

was a trend of inhibition by 32% ( p , 0.1) as shown in

Figures 5(H) and 6(C).

None of the tested polyphenols affected the oxidation

of SP-A in the presence of filtered air (Figure 5).

Discussion

The lung is one of the first physical interfaces between

the outside environment and the body. As such, the

lung is vulnerable to environmental infectious agents

as well as to air pollutants; oxidative stress appears to

play a role in the pathophysiological action of all these

toxicants [20,36]. Ozone, a major air pollutant and

reactive molecule, is converted to ROS capable of

oxidizing lipids and proteins [37]. For example, ozone-

induced oxidation of SP-A protein, an innate host

defense molecule of lung surfactant [6], changes its

functional and biochemical properties [15–19].

Epidemiologic studies have shown that dietary intake

of natural antioxidants (carotenoids) was associated

with improved lung function [38], and supplemen-

tation with a mixture of ascorbate, a-tocopherol, and

carotenoids in healthy subjects exposed to ozone

protected pulmonary function [22]. One of the most

important class of natural antioxidants is plant

polyphenols [26]. It is believed that the lung (along

with the gastrointestinal tract, liver, skin, prostate,

and breast) may be one of the most likely organs to

benefit from the chemopreventive activity of plant

Inhibition of ozone-induced SP-A oxidation by plant polyphenols 361
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polyphenols [39]. For example, a study using an

animal model of acute inflammation caused by

injection of carrageenan has found that green tea

polyphenol extract attenuated lung injury and infiltra-

tion of lung with neutrophils [40]. Moreover, black tea

infusion was shown to reduce oxidation of microsomal

proteins in the lung of cigarette smoke-exposed guinea

pigs and this protective activity was attributed to the

catechins present in black tea [41].

Therefore, the aim of the present study was to

investigate the potential inhibitory activity of three

groups of plant polyphenols against ozone-induced

oxidation of SP-A as a possible protective mechanism

against air pollutants by dietary antioxidants. Although

it was used an in vitro experimental system, the

concentration of SP-A (50mg/ml) was within the

physiological ranges according to the assumptions

made by various laboratories. Thus, it has been

estimated that the BAL levels of SP-A in normal

individuals are in the range of 2–10mg/ml and are likely

to have been diluted 10–100 fold by the lavage

procedure [42–43]. Moreover, ozone concentration

(1 ppm) used in the present study can be achieved

in urban air in high pollution conditions [44]. As regards

polyphenols, the concentrations used were in part

similar to those found in human plasma, since

the maximum plasma polyphenol concentrations

attained after a polyphenol-rich meal are in the range

Figure 5. Effects of tested polyphenols on ozone-induced SP-A oxidation. SP-A was exposed to ozone (1 ppm) for 4 h. Oxidation was

expressed as the product of optical density (OD) by the area (mm2) of dots. Values are the mean ^SE from three independent experiments

carried out in triplicate. NC: Negative control (SP-A alone exposed to filtered air); PC: Positive control (SP-A alone exposed to ozone); FA:

SP-A plus polyphenol at a concentration of 100mM exposed to filtered air. ANOVA was used for the statistical analysis. *p , 0.05 when

compared with positive control.
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of 0.1–10mM [45–47]. Data concerning the bioavail-

ability of polyphenols in human tissues other than

plasma are too limited [47]. It should also be noted that

aglycone polyphenol forms were used in the present

study, while polyphenols reaching the blood are usually

conjugates of glucuronate or sulfate which may exhibit

different activity than their corresponding aglycone

forms [47].

The results showed that the polyphenols variably

inhibited oxidation of SP-A by ozone, and exhibited

distinctive inhibitory patterns based on the

group and/or type of polyphenol, as assessed by

measurements of the formation of protein carbonyls,

which is one of the most reliable markers of protein

oxidation [48]. The flavonoids protected SP-A from

oxidation in a dose dependent manner (Figure 6(A)),

with (2)-epicatechin being the most potent flavonoid.

It is noteworthy that a concentration as low as 5mM

exhibited inhibition of ozone-induced formation of

carbonyls by 35%. At 5 and 25mM (2)-epicatechin

was more potent than (þ)-catechin, while at 50 and

100mM their inhibitory activities were almost the

same (Figure 6(A)). (2 )-Epicatechin and (þ )-

catechin are stereoisomeres, that is the chiral carbon

(position-3) in the former is R, while in the latter is S

(Figure 2). Thus, the present results suggested that

the R form of these flavonoids was more effective

inhibitor of ozone-induced SP-A oxidation than the S

one. Moreover, in another study [49], (2)-epicate-

chin was more effective scavenger of the stable radical

1,1-diphenyl-2-picryl-hydrazyl (DPPH) than (þ)-

catechin. Rutin hydrate was less potent than (2)-

epicatechin at all concentrations, while it was more

potent than (þ)-catechin at 5 and 25mM and less

potent at 50 and 100mM (Figure 6(A)). The

difference in the chemical structure between rutin

hydrate and the two tested catechins is that the former

has a 2,3 double bond, a 4-keto group and a glycosidic

moiety (rutinose) in the 3- position in the C ring

(Figure 2). Although it is considered that the 2,3

double bond and the 4-keto group in the C ring

enhance the antioxidant activity of flavonoids, the

blocking of the 3-OH in the C ring weakens the

antioxidant effect of flavonoids because diminishes

the coplanarity of the B ring relative to the rest of the

molecule [24]. Planarity increases phenoxyl radical

stability and consequently the antioxidant effective-

ness of flavonoids [50].

Although hydroxybenzoic acids inhibited SP-A

oxidation by ozone, their inhibitory activity was less

potent than that observed for flavonoids and exhibited

a plateau at 50mM (Figure 6(B)). Protocatechuic acid

showed inhibition at the lowest concentration of 5mM

and was more potent than gallic acid. The difference

between their chemical structures is that gallic acid

possesses three hydroxyl groups in the 3-, 4- and 5-

positions, while protocatechuic acid has two hydroxyl

groups in the 3- and 4- positions (Figure 2). Thus, the

present results were intriguing, since gallic acid can

donate more hydrogen atoms for scavenging free

radicals and thus it is a more effective antioxidant than

protocatechuic acid [51]. An explanation that could

be given for this contradiction is that polyphenols may

prevent ozone-induced SP-A oxidation not only by

scavenging free radicals but also by binding to SP-A,

thus protocatechuic acid may be more effective than

gallic acid to interact with proteins. Moreover, in

another report of our lab [31], protocatechuic acid

inhibited topoisomerase I catalytic activity, while gallic

acid did not.

Hydroxycinnamic acids showed a different inhibi-

tory mode in comparison with flavonoid and hydroxy-

benzoic acids. The maximum inhibition of oxidation

was observed at medium concentrations while at

higher and lower concentrations there was not

significant inhibition (Figures 5(F)–(H) and 6(C)).

Among the three hydroxycinnamic acids, the most

potent was caffeic acid, since it exerted stastistically

Figure 6. Percentage inhibition of ozone-induced SP-A oxidation

by plant polyphenols at 5, 25, 50 and 100mM. Each value represents

the mean of three experiments carried out in triplicate.
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significant inhibition at both 25 and 50mM, while

p-coumaric acid only at 25mM and ferulic acid did not

show significant inhibition at any concentration

(Figure 5(F)–(H)). The difference in their chemical

structures is that caffeic acid has two hydroxyl groups

in 3- and 4- positions, p-coumaric acid has only one

hydroxyl group at 4- position and ferulic acid has one

hydroxyl group at 4- position and one methoxy

group at 3- position (Figure 2). The ortho-dihydroxy

structure of caffeic acid is considered, in general, the

most important factor for the antioxidant activity of

polyphenols because it confers higher stability to the

phenoxyl radical and participates in electron deloca-

lization [24]. As regards the bell-shaped pattern of

hydroxycinnamic acids, it is in agreement with results

of other reports regarding the activity of antioxidative

compounds, such as (2)-epigallocatechin-3-gallate

[52], green tea extract [53], vitamin C [54],

R-apomorphine and dopamine [55]. These antiox-

idants were protective at low concentrations while

showing pro-oxidant activity at higher concentrations.

Although there is not a definite explanation for this

activity, it could be attributed to the fact that

polyphenols could not inhibit oxidation at the lower

concentrations, while at the higher ones there may be

an auto-oxidation of polyphenols which abolishes their

protective effects.

The mechanism via which the above polyphenols

prevent ozone-induced SP-A oxidation is not known.

However, it is likely that polyphenols prevent ozone-

induced SP-A oxidation either by scavenging free

radicals and/or by binding to SP-A. Polyphenols are

multidentate ligands, whereby each phenolic ring is a

potential binding site and thus are capable of binding

at more than one point on the protein. Moreover,

polyphenols appear to bind preferentially to proline-

rich proteins that have either random coil or collagen-

like helical conformations [56–57]. It is noteworthy,

that SP-A has a collagen-like domain containing a

series of 23 Gly-X-Y triplets with Y being proline or

hydroxyproline and this region along with the

hydrophobic “neck” and carboxyl-terminal domains

play a role in the structure and function of the native

protein [6]. The principal driving force for poly-

phenol-protein binding is multiple non-covalent

bonds, mainly hydrophobic interactions complemen-

ted by hydrogen bonding [58–60]. However, it has

also been reported that under oxidizing conditions

polyphenols can form covalent bonds with proteins

[61]. Interestingly, polyphenols seem to retain their

antioxidant capacity within polyphenol-protein com-

plexes formed after oxidation [29].

In conclusion, according to our knowledge, this is

the first report regarding the protection of natural

antioxidants against the oxidation of SP-A protein, a

molecule that plays an important role in normal lung

function and innate host defense. Although only two

of the tested polyphenols, (2 )-epicatechin and

protocatechuic acid, exerted inhibition at a concen-

tration achievable in the human organism through the

diet, possible synergistic effects between polyphenols

may result in exhibiting inhibition at even lower

concentrations as has been shown by several studies

[62–64]. Although there are obvious limitations in

extrapolating data from in vitro experiments to whole

organisms, our results along with relevant published

literature support the possibility that plant polyphe-

nols present in dietary sources, such as fruits and

vegetables, may be used to prevent the detrimental

effects of air pollutants on the lung.
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